Monatshefte für Chemie 104, 1—10 (1973) © by Springer-Verlag 1973

Darstellung von Fluorjodsilanen (über Halogenaustauschreaktionen) und ihre spektroskopische Charakterisierung. Spektren von SiBrCl₂F und SiBr₂ClF

Von

F. Höfler* und H. D. Pletka

Aus dem Institut für Anorganische Chemie der Technischen Hochschule, Graz, Österreich

(Eingegangen am 2. Juni 1972)

Synthesis of Fluoroiodosilanes by Halogen Exchange Reactions and Their Spectroscopic Characterization. Spectra of SiBrCl₂F and SiBr₂ClF

Br/I-exchange reactions between some bromofluorosilanes and $HSiI_3$ lead to the hitherto unknown fluoroiodosilanes $SiFCl_2I$, $SiFCII_2$, $SiFBr_2I$, $SiFBrI_2$, and SiF_2BrI as well as $SiFI_3$ and SiF_2I_2 . The ¹⁹F-NMR data and vibrational spectra (including assignments) of these compounds and of $SiFCl_2Br$ and $SiFClBr_2$ are reported and discussed.

Durch Br/J-Austauschreaktionen entstehen aus den entsprechenden Bromfluorsilanen und HSiJ₃ die bisher unbekannten Fluorjodsilane SiFCl₂J, SiFCl₂a, SiFBr₂J, SiFBrJ₂ und SiF₂BrJ sowie auch SiFJ₃ und SiF₂J₂. Die ¹⁹F-NMR-Parameter und die zugeordneten Schwingungsspektren dieser Verbindungen sowie von SiFCl₂Br und SiFClBr₂ werden angegeben und diskutiert.

Die in der Literatur beschriebenen Darstellungsverfahren für Fluorjodsilane $\operatorname{SiF}_n \operatorname{J}_{4-n}$ — a) Erhitzen von SiF_4 und SiJ_4 auf $700^{\circ 1}$, b) Umsetzung von AlJ₃ mit SiF_4 oder $\operatorname{Na}_2\operatorname{SiF}_6$ bei $300^{\circ 2}$ oder c) Reaktion von SiF_2 mit J₂ bei $1250^{\circ 3}$ — sind mit einigem experimentellem Aufwand verbunden, so daß auch die physikalischen und chemischen Eigenschaften dieser Verbindungsklasse wenig untersucht sind. Wir fanden kürzlich, daß Trihalogensilane HSiX₃ schon bei wesentlich niedrigeren Temperaturen (25—100°) zu Halogenaustauschreaktionen untereinander und mit Tetrahalogensilanen neigen, wobei sich statistische Gleichgewichte einstellen⁴. Es werden dadurch bei geeigneter Wahl der Reaktionspartner Mischhalogenide besser zugänglich, die nach den bisher ver-

^{*} Herrn Prof. Dr. Harald Schäfer zum 60. Geburtstag gewidmet.

Monatshefte für Chemie, Bd. 104/1

wendeten Halogenierungsmethoden relativ schwierig zu erhalten waren. So gelang uns nach Gl. (1) die Synthese des Multihalogensilans SiFClBrJ⁵:

$$SiFClBr_2 + HSiJ_3 \rightarrow SiFClBrJ + HSiBrJ_2.$$
 (1)

Wir berichten nun über weitere Umsetzungen mit $HSiJ_3$, die zu den einfachen Fluorjodsilanen SiF_2J_2 und $SiFJ_3$ und neuen Mischhalogeniden $SiF_nX_mJ_{4-n-m}$ (X = Cl, Br) mit insgesamt drei verschiedenen Halogenatomen führen. Die Verbindungen werden durch ihre Infrarot-, Ramanund ¹⁹F-Kernresonanzspektren charakterisiert. Die Kernresonanzparameter von SiFClJ₂ sowie der Ausgangsprodukte SiFCl₂Br und SiFClBr₂ sind auch bereits bei der Beschreibung von SiFClBrJ⁵ zu Vergleichszwecken mitgeteilt worden.

Halogenaustausch- und Dismutationsreaktionen

Umverteilungsreaktionen verschiedener Substituenten an einem oder auch mehreren Zentralatomen oder Atomgruppen waren in letzter Zeit sehr häufig Gegenstand spektroskopischer Untersuchungen. Meist bediente man sich dabei der NMR-Spektroskopie, da sie neben dem Nachweis von Umlagerungsprodukten auch quantitative kinetische Aussagen gestattet. Aber auch die Raman-Spektroskopie hat mehrfach Anwendung gefunden, speziell bei Halogenverbindungen, die günstige Streukoeffizienten besitzen. Substituentenaustauschvorgänge am Siliciumatom sind von *Moedritzer* in mehreren Arbeiten untersucht worden^{6, 7, 8}. Der Austausch Br/J, der bei den nachfolgend beschriebenen Äquilibrierungen eine dominierende Rolle spielt, wurde jedoch nur am Beispiel der CH₃Si-Gruppe behandelt, *Ebsworth* führte Messungen an der H₂Si-Gruppe aus⁹.

Vor Beginn unserer Umsetzungen war die thermische Beständigkeit der einzelnen Komponenten zu erproben. Frühere Versuche hatten gezeigt, daß die SiH-Gruppe in HSiJ₃ und gemischten Trihalogensilanen zumindest bis 150° stabil ist, der Wasserstoff also nicht in die Austauschgleichgewichte einbezogen werden muß. Die verwendeten Tetrahalogensilane, SiFBr₃, SiFClBr₂, SiFCl₂Br und SiF₂Br₂ erwiesen sich beim Erhitzen auf 100° über mehrere Tage hinweg als stabil. SiFBr₃ als die am wenigsten beständige Ausgangssubstanz dismutierte hingegen bei 24stündigem Erhitzen auf 150° bereits zu 80% zu SiBr₄ und SiF₂Br₂, letzteres in etwa gleichem Ausmaß zu SiFBr₃ und SiF₃Br.

Zur Durchführung der Austauschreaktionen wurden Mischungen von $\mathrm{HSiJ_3^{4, 10}}$ mit einem der genannten Fluorbromsilane^{11, 12} in verschiedenen Molverhältnissen in NMR-Röhrchen eingeschmolzen und die Bildung der Mischhalogenide in Abhängigkeit von der Temperatur (25 bis 100°) sowohl im ¹H- als auch im ¹⁹F-NMR-Spektrum verfolgt. Die Ein-

stellung der Gleichgewichte erforderte bei 100° eine Zeit von 5 bis 50 Stunden. Wir erhielten dabei folgende Fluorjodsilane:

a) Aus SiFBr₃: SiFBr₂J, SiFBrJ₂, SiFJ₃.

b) Aus SiFCIBr₂: SiFCIBrJ, SiFCIJ₂, SiFBr₂J (und geringe Mengen von SiFBrJ₂ und SiFJ₃).

c) Aus SiFCl₂Br: SiFCl₂J, SiFClBrJ (und geringe Mengen von SiFClJ₂).

d) Aus SiF₂Br₂: SiF₂BrJ, SiF₂J₂.

An gemischten Trihalogensilanen entstand jeweils die Verbindungsreihe $\operatorname{HSiBr}_n J_{3-n}$ $(n = 0 - 3)^4$, bei b) und c) auch kleine Mengen von $\operatorname{HSiClJ}_2^4$, da der Austausch Cl/J kinetisch benachteiligt ist. In der Reaktivität der Fluorbromsilane ergab sich eine Abstufung, die aus der induktiven Beeinflussung der Si-Br-Bindung durch die benachbarten elektronegativeren Substituenten (F, Cl) zu erwarten war:

SiFBr₃ reagierte als einzige Verbindung bereits bei Raumtemperatur mit HSiJ₃. Die Gleichgewichtseinstellung dauerte 9 Tage, sie erfolgte bei 60° in 45 Stunden. Bei SiFClBr₂ und SiFCl₂Br verläuft die Äquilibrierung bei 60° schon merklich langsamer, bei 100° war eine Erhitzungsdauer von 10-15 Stdn. notwendig, im Falle von SiF₂Br₂ war das Gleichgewicht infolge der noch ausgeprägteren induktiven Verstärkung der SiBr-Bindungen erst nach 50 Stdn. bei 100° erreicht.

Auf diese Weise konnten wir von den zwölf möglichen Mischhalogeniden des Typs Si X_2YZ fünf Vertreter erhalten und ihre spektroskopischen Eigenschaften erfassen. Die Verbindungen sind sehr hydrolysenempfindlich und färben sich bei längerem Lichtzutritt durch Jodausscheidung rosa. Thermische Dismutationen waren bis zur angewandten Maximaltemperatur von 100° nicht zu erkennen. SiFCl₂Br und SiFClBr₂ waren bereits von Anderson¹¹ dargestellt worden, SiCl₂BrJ, SiClBr₂J und SiClBrJ₂ wurden in Gemischen an Hand ihrer stärksten Ramanlinien nachgewiesen^{13, 14}. Somit liegen nur noch über die Verbindungen SiF₂ClBr und SiF₂ClJ keinerlei Informationen vor.

Neben $HSiJ_3$ wurden auch andere Jodüberträger versucht. So reagierte Jodsilan, H_3SiJ , ebenfalls mit SiFClBr₂ zu SiFClBrJ, SiFClJ₂ und H_3SiBr , allerdings war die Austauschgeschwindigkeit Br/J bei 100° um mehr als eine Größenordnung geringer. SiJ₄ zeigte beim Erhitzen mit SiFBr₃ oder SiFClBr₂ eine noch weitaus geringere Austauschfähigkeit, katalysierte jedoch die thermische Dismutation der Fluorbromsilane.

¹⁹F-NMR-Spektren

Die ¹⁹F-NMR-Spektren der untersuchten Fluorhalogensilane bestehen aus Singuletts, die von ²⁹Si-Satelliten flankiert sind. Tab. 1 gibt eine übersichtliche Darstellung der gemessenen chemischen Verschiebungen δ (obere Zahlenwerte) und Kopplungskonstanten J (²⁹Si¹⁹F) (untere Zahlenwerte); es sind jeweils Mittelwerte aus 2—5 Messungen angeführt.

Die Daten der Verbindungen SiFCl₃¹⁵, SiFBr₃¹⁵, SiF₂Br₂¹⁵ und SiF₂J₂³ waren bereits bekannt, sie stimmen mit den von uns gefundenen gut überein. Mit zunehmender Substitution durch elektronegativere Halogenatome nimmt die chemische Verschiebung δ des Fluorresonanzsignals bezogen auf CFCl₃ zu, während die Kopplungskonstante J (²⁹Si¹⁹F) abnimmt. Die aus Tab. 1 hervorgehenden Abstufungen sind regelmäßig, man kann jedoch den einzelnen Halogenen nicht einfache additive Inkremente zuordnen, aus denen sich die δ - oder J-Werte einer größeren Anzahl substituierter Fluorsilane der allgemeinen Formel SiFXYZ zusammensetzen ließen:

$$\begin{split} &\delta\left({}^{19}\mathrm{F}\right) \neq \bar{\chi}_{X} + \bar{\chi}_{Y} + \bar{\chi}_{Z} \\ &J\left({}^{29}\mathrm{Si}{}^{19}\mathrm{F}\right) \neq \bar{\beta}_{X} + \bar{\beta}_{Y} + \bar{\beta}_{Z} \end{split}$$

Hingegen lassen sich die gefundenen Meßwerte in die von *Malinowski*¹⁶ eingeführten "paarweisen" Additivitätsbeziehungen einordnen:

$$\delta \left({^{19}\mathrm{F}}
ight) = \chi_{XY} + \chi_{XZ} + \chi_{YZ} \ J \left({^{29}\mathrm{Si}{^{19}\mathrm{F}}}
ight) = eta_{XY} + eta_{XZ} + eta_{YZ}$$

Tabelle 1. ¹⁹F-NMR-Daten von Fluorhalogensilanen Oberer Zahlenwert: chem. Verschiebung δ [ppm] (gegen CFCl₃) Unterer Zahlenwert: Kopplungskonstante J (²⁹Si¹⁹F) [Hz]

^a Lit.¹⁵: 77,33, 368,7; ^b Lit.¹⁵: 92,96, 311,5; ^c Lit.¹⁵: 95,29, 318,8; ^d Lit.³: 73,5, 375.

Es wird hiebei nach Art einer quadratischen Näherung für jedes Paar von Substituenten ein Inkrémentwert β bzw. χ aufgesucht, der vom dritten Substituenten unabhängig ist. Eine theoretische Interpretation solcher Additivitätsregeln stammt ebenfalls von *Malinowski*¹⁷.

Das in Tab. 2 zusammengefaßte, gegenüber einer früheren Aufstellung von Johannesen¹³ wesentlich erweiterte Zahlenmaterial gestattet eine Wiedergabe der Meßdaten mit einer Maximalabweichung von 0,4% bei δ und 1,3% bei J.

In Verbindung mit den von Johannesen¹³ ermittelten Inkrementen anderer Substituentenpaare lassen sich die NMR-Parameter zahlreicher verschieden substituierter Fluorsilane voraussagen, z. B. auch jene für die noch nicht dargestellten Verbindungen SiF₂ClBr und SiF₂ClJ:

SiF₂ClBr:
$$\delta = 103,0$$
 ppm, $J = 300$ Hz
SiF₂ClJ: $\delta = 90,9$ ppm, $J = 330$ Hz

Tabelle 2. Paarweise Inkremente χ und β für δ (¹⁹F) und J (²⁹Si¹⁹F) in SiFX YZ

Atomkombination	χ	β	Atomkombination	X	β
F F	54,7	56,3*	F Br	34,9	100,9
Cl Cl	31,2	104.3	${f F}{f J}$	26,9	115,8
$\operatorname{Br}\operatorname{Br}$	25,5	121,7	$\operatorname{Cl}\operatorname{Br}$	28,0	114,7
JJ	22,3	141,1	Cl J	23,9	130,0
F Cl	40,1	84,7**	${ m Br}~{ m J}$	22,7	134,8

* Aus SiF₄¹⁵; ** Aus SiF₂Cl₂¹⁵.

Schwingungsspektren

Die einfachen Monofluorhalogensilane der Punktgruppe C_{3v} sind in letzter Zeit von mehreren Autoren spektroskopiert worden (SiFCl₃^{18, 19, 20}, SiFBr₃^{18, 21}, SiFJ₃¹⁸). Die Spektren sind in Tab. 3 nochmals angeführt,

Tabelle 3. Schwingungsspektren der Monofluorhalogensilane $SiFX_3 (X = Cl, Br, J) [cm^{-1}]$

SiFCl ₃ (fl.) ¹⁸	SiFBr ₃	SiFJ ₃ ¹⁸	Zuordnung	
944 Ra vw 625 Ra vw 463 Ra vs, p 276 Ra w 234 Ra w, p 164 Ra s	913 IR vs, Ra vw 514 IR vs, Ra w 320 IR m, Ra vs, p 230 Ra m 167 Ra s, p 109 Ra s	 893 IR s 424 IR vs, Ra w 242 IR s, Ra s, p 194 IR m, Ra w 115 IR vw, Ra vs, p 71 IR vw. Ra vs 	$ \begin{array}{l} \nu \operatorname{SiF} (a_1) \\ \nu_{as} \operatorname{Si} X_3 (e) \\ \nu_s \operatorname{Si} X_3 (a_1) \\ \delta \operatorname{FSi} X (e) \\ \delta_s \operatorname{Si} X_3 (a_1) \\ \delta_{as} \operatorname{Si} X_3 (e) \end{array} $	

um die über die Mischhalogenide der Tab. 4 verlaufenden spektralen Übergänge zu verdeutlichen. Die Verbindungen $SiFX_2Y$ besitzen nur

Tabelle 4. Schwingungsspektren von SiF X_2Y -Molekülen [cm⁻¹]

${ m SiFCl_2Br}$ (IR g., Ra fl.)	Zuordnung
935 IR vs, 928 Ra vw 580 IR s, 577 Ra w 628 IR s, 625 Ra vw 405 IR w, 406 Ra vs, p 245 Ra m, p 275 Ra w 218 Ra m, p 152 Ra s, p 143 Ra s	$ \begin{array}{l} \nu \mathrm{SiF} (\mathrm{a}') \\ \nu_{\mathrm{s}} \mathrm{SiCl}_2, \nu \mathrm{SiBr} (\mathrm{a}') \\ \nu_{\mathrm{as}} \mathrm{SiCl}_2 (\mathrm{a}'') \\ \nu \mathrm{SiBr}, \nu_{\mathrm{s}} \mathrm{SiCl}_2 (\mathrm{a}') \\ \delta \mathrm{FSiBr} (\mathrm{a}') \\ \delta_{\mathrm{as}} \mathrm{FSiCl} (\mathrm{a}'') \\ \delta_{\mathrm{s}} \mathrm{FSicl}, \delta \mathrm{ClSiCl} (\mathrm{a}') \\ \delta_{\mathrm{s}} \mathrm{ClSiBr}, \delta \mathrm{ClSiCl} (\mathrm{a}') \\ \delta_{\mathrm{as}} \mathrm{ClSiBr} (\mathrm{a}'') \\ \end{array} $
SiFClBr ₂	Zuordnung
920 IR vs, Ra vw 603 IR vs, 598 Ra w 529 IR s, 522 Ra vw 362 Ra vs, p 247 Ra m, p 232 Ra w 194 Ra s, p 116 Ra s 139 Ra m	$ \begin{array}{l} \nu \; {\rm SiF} \; ({\rm a}') \\ \nu \; {\rm SiCl} \; ({\rm a}') \\ \nu_{{\rm a}s} {\rm SiBr}_2 \; ({\rm a}'') \\ \nu_{{\rm s}} {\rm SiBr}_2 \; ({\rm a}') \\ \delta \; {\rm FSiCl}, \; \delta_{{\rm s}} {\rm FSiBr} \; ({\rm a}') \\ \delta_{{\rm a}s} {\rm FSiBr} \; ({\rm a}'') \\ \delta_{{\rm s}} {\rm CISiBr}, \; \delta_{{\rm s}} {\rm FSiBr} \; ({\rm a}') \\ \delta \; {\rm BrSiBr}, \; \delta_{{\rm s}} {\rm CISiBr} \; ({\rm a}') \\ \delta_{{\rm a}s} {\rm CISiBr} \; ({\rm a}') \\ \end{array} $
SiFCl ₂ J	Zuordnung
SiFCl ₂ J 923 IR s 554 IR m 621 IR s 371 IR m, 373 Ra vs, p 218 Ra m, p 272 IR m 207 Ra s, p 142 ber. 120 ber.	Zuordnung v SiF (a') v_s SiCl ₂ (a') v_{as} SiCl ₂ (a'') v SiJ, δ_s FSiCl (a') δ FSiJ, v SiJ, δ ClSiCl (a') δ_{as} FSiCl, δ ClSiCl (a') δ_s ClSiJ, δ ClSiCl (a') δ_{as} ClSiJ (a'')
SiFCl ₂ J 923 IR s 554 IR m 621 IR s 371 IR m, 373 Ra vs, p 218 Ra m, p 272 IR m 207 Ra s, p 142 ber. 120 ber. SiFClJ ₂	Zuordnung v SiF (a') v_s SiCl2 (a') v_{as} SiCl2 (a'') v SiJ, δ_s FSiCl (a') δ FSiJ, v SiJ, δ ClSiCl (a') δ_{as} FSiCl, δ ClSiCl (a') δ_s ClSiJ, δ ClSiCl (a') δ_a sClSiJ (a'')Zuordnung

Tabelle	4	(Fortsetzung)
---------	---	---------------

 the second se	
$ m SiFBr_2J$	Zuordnung
907 IR vs. Ra vw 471 IR s, 469 Ra vw 503 IR s 291 IR vw, 294 Ra vs, p 208 Ra m 237 ber. 152 Ra*, 148 ber.	v SiF (a') v _s SiBr ₂ , v SiJ (a') v _{as} SiBr ₂ (a'') v SiJ, v _s SiBr ₂ , δ_s FSiBr (a') δ FSiJ, v SiJ, δ_s FSiBr (a') δ_{as} FSiBr (a'') δ_s FSiBr, δ BrSiBr (a')
102 Ra s 83 Ra, sh	δ BrSiBr, δ_{s} BrSiJ (a') δ_{as} BrSiJ (a'')
 Silf BrJ ₂	Zuordnung
900 IR vs, Ra vw	v SiF (a')
484 IR m, 469 Ra w	ν SiBr, ν_s SiJ ₂ (a')
430 IR m	$v_{as}SiJ_2$ (a'')
269 IR w, 271 Ra vs, p	$v_s SIJ_2$, $v SIBr$, $\delta FSIBr$ (a')
203 Ka W 999 han	o \mathbf{F} SIDF, $\mathbf{\delta}_{\mathbf{S}}\mathbf{F}$ SIJ (\mathbf{a}^{\prime})
220 Der. 137 Ra* 131 har	0 _{as} f Sij (&) & FSiT & BrSiI (o')
80 Ba* 80 ber	A ISII & BrSiI (a)
78 ber.	$\delta_{as} BrSiJ(a'')$

* Im Gemisch teilweise durch andere Schwingungen überdeckt.

eine Symmetrieebene (Punktgruppe Cs), es liegen keine entarteten Schwingungen mehr vor. Man hat 9 IR- und Raman-aktive Banden (davon 6 polarisierte Ramanlinien der Rasse a') zu erwarten, die eine typische Intensitätsabfolge aufweisen. Die drei höher gelegenen Valenzschwingungen kann man günstiger aus dem IR-Spektrum entnehmen, die tiefste Valenzschwingung, die bei den Jodverbindungen bereits mit Deformationsschwingungen gekoppelt ist, läßt sich wegen ihrer sehr hohen Raman-Intensität zum Nachweis des betreffenden Mischhalogenids in einem Gemisch heranziehen (in Tab. 4 fett gedruckt). Die Zuordnungen sind bei den Valenzschwingungen meist leicht zu treffen. v SiF ist in allen Verbindungen ungekoppelt; in Übereinstimmung mit den Befunden von Goubeau¹⁸ sinkt ihr Frequenzwert bzw. die Si-F-Valenzkraftkonstante, wenn die Elektronegativitätssumme der drei anderen Halogenatome abnimmt: f(SiF) beträgt in SiF₄ 6,44, in SiF₃ 5,35 mdyn/Å. Um die bestehenden Kopplungsbeziehungen in der symmetrischen Rasse a' zu erhellen, wurden Normalkoordinatenanalysen unter Beibehaltung der Tetraederwinkel durchgeführt. Die Valenz-, Deformations- und Wechselwirkungskraftkonstanten des allgemeinen Valenzkraftfeldes, ihre Abstufungen und die bewährten Mittelungsverfahren wurden aus einer früheren Arbeit übernommen²², die Übereinstimmung von gemessenen und berechneten Frequenzen war wie im Falle von SiFClBrJ⁵ zufriedenstellend (Abweichungen meist

${ m SiF_2Br_2}$	Zuordnung
970 IR s, Ra vw	$v_{as}SiF_2$ (b ₁)
892 IR s, Ra vw	$v_{s}SiF_{2}(a_{1})$
547 IR s*, Ra vvw	$v_{as} SiBr_2 (b_2)$
417 IR m. Ra vs. p	δSiF_2 , $v_s \text{SiBr}_2$ (a ₁)
274 IR w, Ra vs, p	$v_{s}SiBr_{2}, \delta SiF_{2}$ (a ₁)
259 IR w, Ra m	δ FSiBr (b ₁)
$242 \mathrm{Ra} \mathrm{w}$	δ FSiBr (b ₂)
190 Ra w	τ (a ₂)
122 Ra s, p	$\delta \widetilde{SiBr}_2, \delta SiF_2$ (a ₁)
siF_2BrJ	Zuordnung
961 TB s. 964 Ba vw	$v_{ac}SiF_{2}(a'')$
881 IR s. 889 Ra vw	$v_{s}SiF_{2}(a')$
512 IR s	v SiBr. v SiJ (a')
395 Ra vs. p	δ FSiF. v SiJ (a')
270 IR w. 264 Ra s. p	$\delta_{s}FSiBr, \delta FSiF, \gamma SiBr (a')$
255 Ra sh	δ_{aa} FSiBr. δ_{aa} FSiJ (a'')
209 Ba w	δ_{a} FSiJ, ν SiJ (a')
171 Ba w	$\delta_{as}FSiJ$, $\delta_{as}FSiBr$ (a'')
106 ber.	$\delta \operatorname{BrSiJ}(a')$
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$\mathrm{SiF}_{2}\mathrm{J}_{2}$	Zuordnung
955 IR s	$v_{as}SiF_2$ (b ₁)
$872 \ \text{IR s}$	$v_{s}SiF_{2}(a_{1})$
473 IR s, 465 Ra vw	$v_{as}SiJ_2$ (b ₂)
374 IR w, 378 Ra m	$\delta \operatorname{SiF}_2$, $v_s \operatorname{SiJ}_2$ (a ₁)
229 Ra vs	$v_{s}SiJ_{2}, \delta SiJ_{2}$ (a ₁)
229 Ra, 234 ber.	δ FSiJ (b ₁)
214 ber.	δ FSiJ (b ₂)
159 ber.	τ (a ₂)
87 ber.	δ SiJ ₂ , δ SiF ₂ (a ₁)

Tabelle 5. Schwingungsspektren der Dihalogenfluorsilane SiF₂Br₂, SiF₂BrJ und SiF₂J₂ [cm⁻¹]

* Gas: 556 cm⁻¹.

< 5%). An einigen Stellen der Tab. 4 wurden daher berechnete Frequenzwerte eingesetzt, wenn die erwarteten tiefliegenden Banden infolge ihrer geringen Ramanintensität oder wegen Überlagerungen durch Fremdbanden in den Gemischen nicht beobachtet werden konnten. Bei den Zuordnungen gekoppelter Schwingungen in Tab. 4 sind die jeweils beteiligten Schwingungsformen in der Reihenfolge abnehmender Potentialenergie-Anteile aufgeführt. Zwischen den drei Schwingungen der Rasse a" treten keine Kopplungen auf.

In der Reihe der Difluordihalogensilane sind SiF₂Cl₂¹⁹, SiF₂Br₂²¹ und $SiF_2J_2^3$ bereits vermessen worden. Unser Spektrum des SiF_2Br_2 stimmt mit den Literaturangaben innerhalb der Meßgenauigkeit überein (Tab. 5). Einer Normalkoordinatenanalyse zufolge koppeln vsSiBr2 und δ SiF₂ in der Rasse a1 sehr stark miteinander, die beiden starken Ramanlinien bei 417 und 274 cm⁻¹ sind durch nahezu gleiche Energieanteile dieser Koordinaten gekennzeichnet. In SiF₂BrJ werden die Kopplungsverhältnisse weiter kompliziert, da SiBr- und SiJ-Valenz- und FSiFsowie FSiBr-Deformationskoordinaten in Wechselwirkung treten. In SiF_2J_2 ist eine Kopplung von v_sSiJ_2 und δSiF_2 zwar noch vorhanden, aber schwächer ausgeprägt. Die SiBr- und SiJ-Valenzkraftkonstanten sind in diesen Verbindungen um etwa 10% höher als in SiBr₄ bzw. SiJ₄²². Das von Margrave³ ohne Zuordnung tabellierte IR-Spektrum von SiF₂J₂ (968 s, 890 s, 883 s, 494 s, 453 m, 384 m, 225 s [cm⁻¹]) weist im untersuchten Bereich eine zu große Anzahl von Absorptionsbanden auf; so kann zwischen 450 und 500 cm⁻¹ nur eine Grundschwingung ($v_{as}SiJ_2$) auftreten. 968 cm⁻¹ ist unseres Erachtens für $v_{as}SiF_2$ zu hoch, da diese Schwingung in SiF_2Br_2 bei 970 cm⁻¹ liegt.

Die vorstehenden Untersuchungen sollten die Anwendbarkeit von Halogenaustauschreaktionen mit $HSiJ_3$ für die Präparation von Fluorjodsilanen aufzeigen. Durch fräktionierende Destillation bei Temperaturen $< 80^{\circ}$ können die einzelnen Verbindungen isoliert werden; weitere präparative Untersuchungen sind im Gange. $HSiJ_3$ reagiert aber auch mit kovalenten Bromiden und Chloriden anderer Elemente unter Bildung neuer Mischhalogenide, über die gesondert berichtet werden soll.

Die NMR-Spektren wurden mit einem Jeol-JNM-C60H-Spektrometer, die IR-Spektren mit einem Perkin-Elmer 221-Gerät im NaCl- und CsBr-Bereich, die Raman-Spektren mit einem Spex-Ramalog (He/Ne-Laser-Anregung) aufgenommen. Die Autoren danken Herrn Prof. Dr. *E. Hengge* für stete Förderung, dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für apparative Unterstützung.

Literatur

¹ H. H. Anderson, J. Amer. Chem. Soc. 72, 2091 (1950).

² M. Schmeisser und H. Jenkner, Z. Naturforsch. 7 b, 191 (1952).

³ J. L. Margrave, K. G. Sharp und P. W. Wilson, J. inorg. nucl. Chem. **32**, 1813 (1970).

⁴ E. Hengge und F. Höfler, Z. Naturforsch. 26 a, 768 (1971).

⁵ F. Höfler und W. Veigl, Angew. Chem. 83, 977 (1971).

10 F. Höfler und H. D. Pletka: Darstellung von Fluorjodsilanen

⁶ K. Moedritzer und J. R. van Wazer, Z. anorg. allgem. Chem. **345**, 35 (1966).

⁷ K. Moedritzer und J. R. van Wazer, Inorg. Chem. 5, 547 (1966).

⁸ K. Moedritzer, Adv. Organomet. Chem. 6, 171 (1968).

⁹ E. A. V. Ebsworth, A. G. Lee und G. M. Sheldrick, J. Chem. Soc. (A) 1968, 2294.

¹⁰ O. Ruff, Ber. dtsch. chem. Ges. **41**, 3738 (1908).

¹¹ W. C. Schumb und H. H. Anderson, J. Amer. Chem. Soc. 59, 651 (1937).

¹² W. C. Schumb und H. H. Anderson, J. Amer. Chem. Soc. 58, 994 (1936).

¹³ *M. B. Delhaye-Buisset*, C. r. hebdomad. Sé. Acad. Sci. Paris **244**, 770 (1957).

¹⁴ C. Cerf und M. B. Delhaye, Bull. Soc. Chim. Fr. 1964, 2818.

¹⁵ R. B. Johannesen, F. E. Brinckman und T. D. Coyle, J. physic. Chem. **72**, 660 (1968).

¹⁶ E. R. Malinowski und T. Vladimiroff, J. Amer. Chem. Soc. 86, 3575 (1964).

¹⁷ T. Vladimiroff und E. R. Malinowski, J. Chem. Phys. 46, 1830 (1967).
 ¹⁸ J. Goubeau, F. Haenschke und A. Ruoff, Z. anorg. allgem. Chem. 366, 113 (1969).

¹⁹ M. L. Delé-Dubois und F. Wallart, C. r. hebdomad. Sé. Acad. Sci. Paris **272 B**, 1059 (1971).

²⁰ K. Hamada, G. A. Ozin und E. A. Robinson, Canad. J. Chem. **49**, 477 (1971).

²¹ M. L. Dubois, M. B. Delhaye und F. Wallart, C. r. hebdomad. Sé. Acad. Sci. Paris **269 B**, 260 (1969).

²² F. Höfler, Z. Naturforsch. 26 a, 547 (1971).